

Combining online job advertisements with probability sample data for enhanced small area estimation of job vacancies

Donatas Šlevinskas, Andrius Čiginas, Ieva Burakauskaitė

Outline

Introduction

Job vacancy estimation in domains Integration of NP samples

Methodology

The case of NP based on OJA Further small area estimation modeling EBLUP based on the FH model

Empirical results

Effectiveness for a single quarter Effectiveness for multiple quarters

Auxiliary information in sample surveys

- What is the main product of National Statistical Institutes (NSIs)? Official statistics.
- NSIs aim for improvement:
 - → by timeliness more frequent estimates,
 - → by granularity more detailed level estimates.
- Typically sample designs are optimized for population-level estimates. Small domains often have:

```
limited or unplanned sample coverage \downarrow
small sample sizes \downarrow
high variability or unreliable estimates
```

A possible solution: incorporate administrative data or other non-traditional data sources (mobile network, social media, etc.) to supplement existing probability sample data.

Data source	Target variable, y	Auxiliary data, x
NP sample	×	\checkmark
P sample	\checkmark	\checkmark

- Probability sample data on job vacancies in companies are collected in the quarterly Statistical survey on earnings.
- There is complete administrative information on the monthly number of employees, economic activity, etc.
- Transformed online job advertisement (OJA) data:
 - only partially covers the survey population;
 - as non-probability (or big data) sample is not representative;
 - roughly approximates job vacancies by nonlinear relationship.

Direct job vacancy estimation in domains

- Let \mathcal{U} be the finite population and $\mathcal{U} = \mathcal{U}_1 \cup \cdots \cup \mathcal{U}_M$ be its partition into M non-overlapping domains, $|\mathcal{U}_m| = N_m$.
- The aim is to estimate domain totals

$$t_m = \sum_{i \in \mathcal{U}_m} y_i, \quad m = 1, \dots, M.$$

- The probability sample A_m is of size $n_m \leq N_m$ in the *m*-th domain.
- The inaccuracy of the estimator can also be expressed using the Coefficient of Variation (CV):

$$\mathsf{CV}(\hat{t}_m) = \sqrt{\mathsf{var}(\hat{t}_m)}/\hat{t}_m.$$

• If the sizes N_m are assumed to be known, the direct Hájek estimators of the totals t_m are

$$\hat{t}_m^{\mathsf{H}} = rac{\mathcal{N}_m}{\widehat{\mathcal{N}}_m} \sum_{i \in A_m} d_i y_i \quad \text{with} \quad \widehat{\mathcal{N}}_m = \sum_{i \in A_m} d_i, \quad m = 1, \dots, M,$$

where $d_i = 1/\pi_i$ are design weights and π_i are the first-order inclusion probabilities.

• The variances $\psi_m^{H} = \operatorname{var}(\hat{t}_m^{H})$ may be too large for small n_m .

Possible cases of NP integration

- A and B probability and non-probability samples respectively,
- y_i the target variable for which a parameter (such as total, mean, or quantile) needs to be estimated,.
- x_i auxiliary covariate vector,
- d_i design weight of *i*th unit.

Possible cases of NP integration (2)

- A and B probability and non-probability samples respectively,
- > y_i the target variable for which a parameter (such as total, mean, or quantile) needs to be estimated,.
- x_i auxiliary covariate vector,
- *d_i* design weight of *i*th unit,
- $\pi(\mathbf{x}_i, \hat{\theta}), i \in B$ estimated propensity scores.

Possible cases of NP integration (3)

Kim & Tam (2021) regression data integration estimator:

- δ_i inclusion into *B* indicator,
- ▶ w_i calibrated weight of unit *i*th,
- ▶ $D(\cdot, \cdot)$ distance function.

The case of NP based on OJA

Modified regression data integration estimator based on model-calibration: (*Wu & Sitter, 2001*)

- δ_i inclusion into *B* indicator,
- ▶ $D(\cdot, \cdot)$ distance function,
- $\hat{\mu}_i = \hat{\mu}_i(\mathbf{x}_i, \hat{\theta})$ predictions of y_i based on model that was fitted on $A \cap B$ data.

The data for the Fay-Herriot (FH) model (Fay & Herriot, 1979):

- The model-calibrated estimators t^{MC}_m treated as the direct estimators because they are approximately design-unbiased under certain conditions (Wu & Sitter, 2001).
- Estimators $\tilde{\psi}_m^{\text{MC}}$ of the variances $\psi_m^{\text{MC}} = \operatorname{var}(\hat{t}_m^{\text{MC}})$.
- Exactly known area-level covariates z_m = (z_{m1},..., z_{mq})', q ≤ p, selected from aggregates of auxiliary data x_i, i ∈ U_m.

The standard FH model is the linear mixed model

$$\hat{t}_m^{\mathsf{MC}} = \mathbf{z}_m' \boldsymbol{\beta} + \mathbf{v}_m + \varepsilon_m, \quad m = 1, \dots, M,$$

where $\varepsilon_m \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \psi_m^{\text{MC}})$ are sampling errors, $v_m \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_v^2)$ are random area effects independent of ε_m , and β are fixed effects.

EBLUP based on the FH model

The empirical best linear unbiased predictions (EBLUPs) of the domain totals t_m , m = 1, ..., M, are expressed as the linear combinations (Fay & Herriot, 1979)

$$\hat{t}_m^{\mathsf{FH}} = \hat{\gamma}_m \hat{t}_m^{\mathsf{MC}} + (1 - \hat{\gamma}_m) \mathbf{z}'_m \hat{eta} \quad ext{with} \quad \hat{\gamma}_m = rac{\hat{\sigma}_v^2}{ ilde{\psi}_m^{\mathsf{MC}} + \hat{\sigma}_v^2},$$

and

$$\hat{\boldsymbol{\beta}} = \left(\sum_{m=1}^{M} \frac{\mathbf{z}_m \mathbf{z}'_m}{\tilde{\psi}_m^{\mathsf{MC}} + \hat{\sigma}_v^2}\right)^{-1} \sum_{m=1}^{M} \frac{\mathbf{z}_m \hat{t}_m^{\mathsf{MC}}}{\tilde{\psi}_m^{\mathsf{MC}} + \hat{\sigma}_v^2},$$

where $\hat{\sigma}_{v}^{2}$ is an estimator of the variance σ_{v}^{2} of random area effects.

For data like job vacancies, the standard FH model should be applied to the log-transformed estimators (*Rao & Molina, 2015*)

$$\log(\hat{t}_m^{\text{MC}})$$
 with $\operatorname{var}\left(\log(\hat{t}_m^{\text{MC}})\right) \approx (\hat{t}_m^{\text{MC}})^{-2}\operatorname{var}(\hat{t}_m^{\text{MC}}).$

Effectiveness for a single quarter

Figure 1: Comparison of direct estimates and EBLUPs for a period of 2024 Q2. Note: good (CV \leq 16.5%), sufficient (16.5% < CV \leq 33.3%), unreliable (CV > 33.3%)

Effectiveness for multiple quarters

Estimator: 🖨 Direct 🖨 EBLUP (MC*)

Figure 2: Comparison of direct estimates and EBLUPs.

Effectiveness for multiple quarters (2)

Figure 3: Trends in Direct and EBLUP estimates by quality groups. Note: good (CV \leq 16.5%), sufficient (16.5% < CV \leq 33.3%), unreliable (CV > 33.3%).

- Initial preprocessing and record linkage:
 - Performed in Python using Spark for efficient data processing.
- Model building and model calibration estimates:
 - Conducted in R using the StatMatch and survey packages.
- Final EBLUP estimates and diagnostics:
 - Generated using the emdi package in R for small area estimation.

- Fay, R.E., Herriot, R.A. (1979). Estimates of income for small places: an application of James-Stein procedures to census data. *J. Amer. Statist. Assoc.* 74:269–277.
- Kim, J.-K., Tam, S.-M. (2021). Data integration by combining big data and survey sample data for finite population inference. *Int. Stat. Rev.* 89:382–401.
- Rao, J.N.K., Molina, I. (2015). Small Area Estimation. 2nd edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Wu, C., Sitter, R.R. (2001). A model-calibration approach to using complete auxiliary information from survey data. J. Amer. Statist. Assoc. 96:185–193.

State data agency Statistics Lithuania

Thank you for attention

Combining online job advertisements with probability sample data for enhanced small area estimation of job vacancies

Donatas Šlevinskas, Andrius Čiginas, Ieva Burakauskaitė

