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• 2018-24

• Classifications: occupations (ISCO), skills (ESCO), …

In this work: 

- Greek language

- NUTS-2 region
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• Embeddings-based approach
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Step 2: LLMs as ‘experts’

You are an NLP annotator. You are being provided with a phrase (unigram or bigram) in Greek, which is very likely to be the name

of a location (not necessarily in Greece).

Your task is to find and output the NUTS-2 region of the phrase (or of part of the phrase) in the following format:

<NUTS2_CODE><NUTS2_NAME> (e.g.: <EL30><Περιφέρεια Αττικής>)

If the phrase does not match any location, output: <NONE><NONE>

If the phrase is more generic (e.g., 'Greece'), output the respective NUTS-1 region, if available (or country code, otherwise):

<NUTS1_CODE><NUTS1_NAME>

If you find multiple locations for the same phrase, list up to 3 locations:

<NUTS2_CODE1><NUTS2_NAME1>, …, <NUTS2_CODE3><NUTS2_NAME3>

Try to associate a phrase with a NUTS-2 code, even if you are not certain about it (avoid <NONE><NONE> as much as possible). Do

not reason about your answers. The phrase is:
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• Result: 6,501 (OJA_text, NUTS2_region) tuples (from 10k OJAs)
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• Step 3: Training dataset creation

• Map candidates/NUTS-2 labels from Step 2 back to their OJA descriptions

• Keep OJAs with only one NUTS-2 region assigned

• Result: 6,501 (OJA_text, NUTS2_region) tuples (from 10k OJAs)

• Test dataset creation

• Manual annotation: 528 (OJA_text, NUTS2_region) written in Greek

• Fine-tune BERT (Koutsikakis et al., 2020) for classification task:

• Train on the 6,501 OJA descriptions

• Apply model on the 528 OJA descriptions

• Measure accuracy on the 528 OJAs Image source: github

Koutsikakis, John, et al. "Greek-bert: The greeks visiting sesame street." 11th Hellenic conference on artificial intelligence. 2020.

https://github.com/nlpaueb/greek-bert
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Model Explanation Incl. N/A 

regions

Excl. N/A 

regions

Cost

Majority Predicts ‘EL30’ all the time .254 .329 -

ChatGPT

Labels ‘candidate’ location terms

extracted from each OJA in the test set.

The output is the final prediction for each

OJA.

.813 .828 $0.25 (for 528

OJAs)

Ours A BERT-based model that is trained on

6,501 OJAs that were previously

annotated by ChatGPT.

.767 .933

$34 (for all OJAs

in Greek)
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Most characteristic keywords:
palace, groom, laundry, reservations, porter,
valet, touristic, sommelier, supervisor,
reservation, houseman, students, resort, ip,
bellboy, woman, night, reception, maid, airlines,
screeners, concierge, atrium
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• Task: extract NUTS-2 regions of employment from OJAs in Greek

• LLMs as ‘annotators’

• Extremely limited manual effort

• Very high accuracy

• Privacy-preserving approach

• Scalability

• Limitations

• Single language

• Small test set

• Future work

• Expand the approach across languages

• Robust validation
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