

Since 1991

Using Web Data for energy statistics: Methodology and key lessons

Mathieu SCHEFFER Marianne DOUL Sandrine HERBETH

Why Web Data?

- Growing need for timely, granular, and comprehensive statistics.
- Web data's potential to complement traditional datasets.

Project Overview:

- "Tapping New Data Sources" awarded by Eurostat.
- Focus: Integrating web-based and alternative data for energy statistics.

Objectives:

- Enhance timeliness and relevance of energy statistics.
- Develop innovative methodologies for web data extraction and validation.

Tool developments – Platforms analysis and needs

Load ?	Seneration ?		D 1						
		ransmission ?	Balancing ? Outa	ges ? Congest	tion Manag	ement ? S	System Ope	erations ? Da	ata Pre-5.1.15
stalled Ca	anacity Per	Production	Unit 🕤						
talled generation of	capacity per unit [14	1.1.B]					No		
Control Area	Bidding zone						Year 2025	5	
Controllared	Didding 2010								
rea		Show fullscre	en Export Data ▼						
✓ Belgium (BE) 🗸 🧍					Bž	ZN BE		
BZNIBE Bosnia and H Bulgaria (BG	<u>Herz. (BA)</u> ▼) ▼	Production Type	Code	Name	Installed Capacity at the beginning of the year	Current Installed Capacity	Location	Voltage Connection Level	Commissionin Date
<u>Croatia (HR)</u>	*				[MW]	[MW]		[kV]	
Cyprus (CY)	•	Nuclear	22WDOELX40000793	DOEL 4	1039	1039	Belgium	380	01.01.2014
Czech Repu	<u>blic (CZ)</u> ▼	Nuclear	22WTIHANG000242R	TIHANGE 3	1038	1038	Belgium	380	01.01.2014
Denmark (DF Estonia (EE)	<u><)</u> – ()	Hydro Pumped Storage	22WCOOXII000070C	COO II T	690	690	Belgium	380	01.01.2014
Finland (FI)	•	Nuclear	22WTIHANG000239G	TIHANGE 1N	481	481	Belgium	380	01.01.2014
France (FR)	•	Nuclear	22WTIHANG000240V	TIHANGE 1S	481	481	Belgium	380	01.01.2014
Georgia (GE).▼ =) ▼	Fossil Gas	22WHERDER0001288	HERDERSBRUG STEG	480	480	Belgium	150	01.01.2014
Greece (GR)	=,/ ▼	Hydro Pumped Storage	22WCOOXIX000067T	COOIT	474	474	Belgium	380	01.01.2014
Liceland (IS)	<u>)</u> •	Fossil Gas	22W201806271D	EDF Luminus Seraing TGV	470	470	Belgium	220	14.10.2018
Ireland (IE)	-	Fossil Gas	22WDROGEN0000863	DROGENBOS TGV	465	465	Belgium	150	01.01.2014
	Type	Fossil Gas	22WAMERCO000010Y	Amercoeur 1 R	451	451	Belgium	150	01.01.2014

Overview documents

Key reports

Ļ	Statistical Review of World Energy	PDF/10MB 🗸
Ļ	Statistical Review of World Energy - Chinese Version	PDF/10MB 🗸
ð	Statistical Review of World Energy Data $XSLX / 4MB \sim$	Cite
	2024 Country Transition Tracker Data XSLX / 79.5KB 🗸	Cite

Tool developments - PYTHON

- Libraries used: Steamlit and BeautifulSoup
- Configurable tool:
 - List of countries
 - List of indicators
 - > Time ranges
 - API interactions
- Extraction into CSV format

Control panel	
Tool:	
ENTSO-G	×
Start	
Proxy parameters	
Login:	
test	
Password:	
	ø
Server	
proxy-t2-lu.welcome.ec.europa.eu:8012	

Data extraction	
Extract data from ENTSO-G transparency platform	
Start date	
2023/12/08	
End date	
2023/12/16	
Indicator	
Physical Flow	`
Timezone	
CET	`
Country	
AT	
Direction	
entry	

Tool developments – Each platform its own set of requirements

ENTSO-E and ENTSO-G

both required direct database access via API.

The Energy Institute

provided an Excel file, so we built a feature that allows users to select only the needed indicators. required API access, but the selection process differed slightly

GIE

Technical challenges

- API limitations
- **Proxy restrictions**
- Confidentiality, access rights and copyright issues
- Adapting to different structures

Specific case of Eurofuel

- Extracting text-based data from images
- **Proxy security created difficulties**

Results and scalability

• Results:

- Successfully validated and extracted data from key platforms.
- Developed reusable tools for scalable web data integration.

• Scalability:

- Modular design allows for the addition of new platforms and datasets.
- Potential for application in other statistical domains.

Lessons learned and conclusions

Lessons learned

- Technical adaptability is crucial
- Collaboration with data providers is essential
- Robust validation is necessary

Conclusions

- Potential to enhance official energy statistics
- Mainly used for comparison purposes
- May be used as proxy to improve timeliness
- Might be disseminated in the future?

Since 1991

Using Web Data for energy statistics: Methodology and key lessons

Project Manager: Marianne.Doul@artemis.lu

Data Scientist: Mathieu.Scheffer@artemis.lu

Speaker and project manager (back-up): Sandrine.Herbeth@artemis.lu

eurostat O

Eurostat project leader:

Michael.Goll@ec.europa.eu